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Laplace: Father of Modern Scientific 
Computing? 

Computer simulations can be seen as the modern realization of a centuries-
old dream known as the “clockwork universe.”  This was stated most 
clearly by Pierre Simon Laplace in 1773: 

  “An intelligence knowing all the forces acting in nature at a given instant, as well 
as the momentary positions of all things in the universe, would be able to 
comprehend in one single formula the motions of the largest bodies as well as of 
the lightest atoms in the world, provided that its intellect were sufficiently powerful 
to subject all data to analysis; to it nothing would be uncertain, the future as well 
as the past would be present to its eyes.” 

We now know that this dream, taken to its logical extreme, is unrealistic: 
  Chaos theory teaches us that even simple physical systems exhibit chaos: slight 

changes to the present state are exponentially magnified. 
  Quantum theory teaches us that it is fundamentally impossible to know both 

positions and velocities at any instant to arbitrarily high accuracy. 
But many physical systems are amenable to computer simulation, and even 

chaotic systems can be studied computationally. 
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Computing 

Theory Experiment 

Computing: 
The Third Mode of Scientific Discovery 
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Progress of Scientific Supercomputers: 
Data from the Top500 List 
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Computing: A Multi-Disciplinary Symphony 
of 21st Century Science and Engineering 

  Basic physical laws. 
  Mathematical formulations of these laws. 
  Numerical algorithms to solve the mathematics. 
  Computational techniques to implement algorithms. 
  Grid generation. 
  Multidimensional optimization techniques to explore parameter variations. 
  Parallel computing methods. 
  Scientific visualization. 
  Performance monitoring and analysis. 
  Computer system software. 
  Computer system hardware. 
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Basic Physical Laws 

Example: 
  Suppose initial velocity = 100 m/s at a 45 deg angle (i.e. 70.71 m/s horizontal and 

70.71 m/s vertical vel), and is subject to gravity. 
  Then after 0.1 sec, horiz vel = 70.71 m/s, vert vel = 70.71 - 0.1 x 9.8 = 69.73 m/s.  
  Thus object will have risen 0.1 x 69.73 = 6.973 m, and moved forward 7.071 m. 
  Repeated applications yield the above curve.  More accurate results can be 

obtained by using a smaller time interval, e.g. 0.01 sec or 0.001 sec. 
  This is just for one object.  Large simulations do similar computations for millions 

or billions of objects, on a large 3-D grid of spatial points. 
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200Many large scientific computations are 
merely repeated applications of simple 
physical laws, e.g., Newtonʼs laws, e.g.: #

#force = mass x accel#
#gravity= G M1 M2 / R2.#
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Mathematical Formulations  
of Physical Laws 

All basic laws of physics can be encapsulated into mathematical equations.  
For example, Maxwell’s equations governing light and electromagnetic 
radiation can be written as: 

∇ · E = 4πρ
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Numerical Algorithms 

  Advanced numerical algorithms are used to solve the underlying 
mathematical formulations of physical laws. 

  These algorithms dramatically lower the amount of computation normally 
required – modern scientific computing could not be done without them. 

  Examples: 
  Dense linear algebra. 
  Sparse linear algebra. 
  Spectral methods (i.e., fast Fourier transforms). 
  N-body methods. 
  Structured grid methods for partial differential equations. 
  Unstructured grid methods for partial differential equations. 
  Distribute-reduce schemes. 
  Sorting, searching. 
  Optimization, maximization, minimization. 
  Many others. 
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Computational Techniques 

Because of the realities of modern computer architectures, efficient 
implementations of basic algorithms require considerable sophistication: 

  Data locality is very important: 
  The “hierarchical” design of processors (Level-1 cache, Level-2 cache, 

Level-3 cache, main memory, disk memory) means that computations must 
be carefully structured for good performance. 

  It is often more efficient to recompute a value, rather than store it to memory 
and later fetch it. 

  Changing computer designs means that computer programs that once 
were “efficient” now must be revised. 
  Floating-point multiply operations once were much more expensive than add/

subtract operations, so codes were changed to exploit this.  Now there is no 
difference. 

  Computation (add, subtract, multiply, divide) was once much more expensive 
than fetching and storing data to memory.  Now the opposite is true. 
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Grid Generation 

  In many computational simulations, a key aspect of the computer 
implementation is the construction of a grid of points or polygons that 
encompass the physical object under study. 

  Techniques for generating efficient and effective grids are an active field 
of research. 
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Optimization Techniques 

  After a computational simulation program has been successfully 
developed, say to simulate the operation of a jet engine, then researchers 
run many instances of this simulation with variations of the input 
parameters, in an attempt to find an optimal configuration. 

  Advanced optimization techniques permit these searches to be done 
significantly more efficiently than by exhaustive search. 

  The resulting discipline of multidimensional optimization now is an 
essential part of high-performance computing. 

  On some large supercomputers, almost all jobs perform multidimensional 
optimization. 
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Parallel Computing 

  Parallel computing (using multiple processors for a single computation) 
until recently was the exclusive province of large government laboratories. 

  Now, even consumer personal computers have more two, four, eight or 
more “cores,” and it is essential to take advantage of these cores to fully 
utilize the power of the system. 

  Scientists who do not convert their programs to utilize parallel computers 
will soon be left behind. 

  Constructs must be inserted into computer programs to control: 
  Data layout. 
  Broadcast of data from the control node to other nodes. 
  Synchronization between nodes. 
  Communication between nodes. 
  Collection of data from all nodes back to a single node. 
  Parallel input and output of data to external disk drives. 
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Amdahl’s Law 

A simple principle first enunciated by Gene Amdahl in the 1960s places limits 
on speedup from parallel processing: 

  If some fraction P of a computation is amenable to parallelization with 
speedup S, then the maximum possible speedup of the entire calculation 
is no more than  1 / ((1-P) + P/S). 

For instance, if 99.9% of a computation can be effectively run in parallel on 
10,000 processors, and the rest must be done serially, then the maximum 
possible speedup is only 909 (out of 10,000). 

So far scientists working on large-scale computers have been able to keep 
Amdahl’s Law “at bay.”  But how long will our luck hold out? 

  In some arenas, such as climate modeling, computer programs are 
already pressing the limits of available concurrency. 

Present-day leading-edge computations typically must exhibit 108-way 
concurrency at EVERY step of the computation. 
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Scientific Visualization 

  With the enormous volumes of data now involved in a large scientific 
simulation, it is no longer possible for a scientist to examine bits of data 
one by one. 

  Instead, sophisticated scientific visualization software must be employed. 
  Finding better ways to generate displays, and finding newer approaches 

to visualization, are active areas of research. 



15 

Performance Monitoring 
and Analysis 

  Scientists are often disappointed in the performance (computational 
speed) of their programs – often only a few percent of the peak theoretical 
performance is achieved. 

  Numerous sophisticated software tools are now available to find 
bottlenecks and improve performance. 

  The development of automatic performance tuning tools for scientific 
computer programs is an active area of research. 
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System Software 

Underlying all of scientific computing is an enormous body of system 
software, without which scientific computing would not be possible: 

  Operating system – Linux is the most widely used, although BSD Unix 
and IBM’s AIX Unix are also used. 

  Compilers – before any program is executed, it must be “compiled”, i.e., 
translated to machine instructions, using sophisticated techniques to 
obtain the best performance. 

  Support for parallel computing. 
  Support for large-scale data storage. 
  Support for networking. 
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Computer Hardware 

A large-scale scientific computer is much more than just a collection of chips 
– the large-scale system architecture is also important. 

  Until about 2000, vector supercomputers were the most common platform 
for large-scale scientific computing. 

  Now most scientific computing is done on large clusters of units, each of 
which is often an off-the-shelf personal computer system. 

  The interprocessor network is very important – without a very high-speed 
network, many scientific computations would be mired in network 
congestion. 
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2X transistors/chip every 1.5 years 
Called “Moore’s Law” 

In 1965 Gordon Moore (co-
founder of Intel with Andy 
Grove and Robert Noyce) 
predicted that the transistor 
density of semiconductor 
chips would double every 18 
months or so. After 45 years, 
no end is yet in sight! 

Moore’s Law: 45 Years of Sustained 
Exponential Growth in Computer Power 



19 

LBNL’s National Energy Research 
Scientific Computing Center (NERSC) 

NERSC serves a large population of users: 
~3000 users, ~400 projects, ~500 codes 

Allocations managed by the Department of Energy: 
 10% INCITE awards: 
 Open to all of science, not just DOE-funded projects. 
 Large allocations, extra service. 

 70% production (ERCAP) awards: 
 From 10,000 CPU-hours to 5,000,000 CPU-hours. 

 10% each NERSC and DOE reserve for special needs. 
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NERSC 2009 Configuration 

Current flagship system: “Franklin” 
• Cray XT4#
• 9,740 nodes; 19,480 cores 
• 78 Tbyte main memory 
• 355 Tflops/s theoretical peak 
• ~25 Tflops/s sustained on real scientific 

work 
New upgrade (3Q 2010): “Hopper” 
•  Cray XT-5, 6400 nodes, 153,600 cores 
•  1.9+ GHz AMD Opteron chips 
•  1.17 Pflop/s peak performance (1.17 x 1015) 
•  Expect 100 Tflop/s sustained performance 
•  217 TB DDR3 memory total 
•  Gemini Interconnect 
•  2 Pbyte disk, 80 Gbyte/s bandwidth 
•  Liquid cooled 
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Global Cloud System Resolving Models 

1km	  
Cloud	  system	  resolving	  

models	  
are	  a	  transforma5onal	  

change	  

25km	  
Upper	  limit	  of	  climate	  
models	  with	  cloud	  
parameteriza5ons	  

200km	  
Typical	  resolu5on	  of	  
IPCC	  AR4	  models	  

Surface Altitude (feet)#
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Climate Modeling with CCSM 

  Climate Change Simulations with CCSM: Moderate and High 
Resolution Studies. 

  Principal investigator: Warren Washington, NCAR. 

•  Science Results:  
–  2000-2100 simulation on 

preserving polar bear 
habitat by reducing non-
CO2 emissions. 

–  Separating human and 
natural forcings in 
climate change. 

–  Sulfate and carbon 
sulfate impact isolated. 

Granted 12,000,000 CPU- 
hours in 2009. 

Typical runs utilize 
5000-6000 cores. 
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Material Modeling for Geoscience 
  Calculation: Simulation of seismic waves through silicates, which make up 

80% of the Earth’s mantle; important for understanding structures in oil well 
drilling, carbon sequestration, earthquakes, etc. 

  PI: John Wilkins, Ohio State University 

First use of Quantum 
Monte Carlo (QMC) 
for computing elastic 
constants. 

Typical runs utilize 
8,000 cores. 

Science Result: 
– Seismic analysis shows jumps in wave velocity due to structural 

changes in silicates under pressure 
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  Low-swirl burners were invented in 1991 at 
LBNL. 

  They are now being developed for near-zero-
emission gas turbines (2007 R&D 100 Award). 

  They dramatically reduce pollutants by using 
special “lean premixed” fuels in power 
generation and transportation.   

  Combustion with these fuels can be highly 
unstable, making robust systems hard to 
design. 

Low-Swirl Combustion Burner 
Simulation 
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Low-Swirl Burner Simulation  

  Computation: Numerical simulation of a lean premixed hydrogen 
flame in a laboratory-scale low-swirl burner (LMC code).  Uses a low 
Mach number formulation, adaptive mesh refinement (AMR) and 
detailed chemistry and transport. 

  PI: John Bell, LBNL  

Science Result:  
•  Simulations capture cellular structure of lean 

hydrogen flames and provide a quantitative 
characterization of enhanced local burning 
structure. 

•  LMC dramatically reduces time and memory. 
•  Scales to 4K cores, typically run at 2K 
•  Used 9,600,000 CPU-hours in 2008; allocated 

5,500,000 CPU-hours in 2009. 

J B Bell, R K Cheng, M S Day, V E Beckner and M J Lijewski, Journal of Physics: Conference Series 
125 (2008) 012027. 
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New Linear Scaling Method for Electronic 
Structure Calculations 

  A new linear scaling three dimensional 
fragment (LS3DF) method for 
electronic structure calculations now 
makes possible the simulation of 
nanostructures with the same 
accuracy as a direct ab initio method. 

  The LS3DF method is based on the 
observation that the total energy of a 
given system can be broken down into 
two parts: 
  Long-range electrostatic energy 
  Short-range quantum mechanical 

energy 
  LBNL researchers have used a divide 

and conquer approach to study the 
total dipole moments of CdSe 
quantum dots. 

Simulation of CdSe nanorods. The green atoms are Cd, 
yellow atoms are Se, and white atoms are surface 
hydrogen.  (top) the potential on the central axis; 
(bottom) the electron state (red) and hole state (green) 
isosurfaces with an isovalue of 0.0002 e/Bohr3. 

J. Meza, L.-W. Wang, Z. Zhao, LBNL, Nanoscience-Math 
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LS3DF Code Wins 2008 ACM Gordon 
Bell Prize for “Algorithm Innovation” 
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XT5: 442 Tflops 
• NCCS Jaguar 
• 36,864 cores 
• 33% of peak 
BG/P: 224 Tflops 
• ALCF Intrepid 
• 163,840 cores 
• 40% of peak 
XT4: 139 TFlops   
• NERSC Franklin 
• 147,146 cores  
• 40% of peak 
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NERSC User George Smoot  
wins 2006 Nobel Prize in Physics 

COBE Experiment showed 
anisotropy of CMB#

Cosmic Microwave 
Background Radiation 
(CMB): an image of the 
universe at 400,000 years.#



29 

Cosmic Microwave Background 
Computations 

 Calculation: Planck full focal plane#
  1 year simulation of CMB (T & P), 

detector noise & foregrounds.#
  74 detectors at 9 frequencies. #
  750 billion observations.#
  54,000 files, 3 TB data.#

  Principal investigator: J. Borrill, LBNL.#

Science Result: #
•  9 “routine” 1-frequency maps.#
• Unprecedented 9-frequency map with 

entire simulated Planck data set.#
Scaling Results:#
•  9-frequence problem ran for < 1 hour on 

16K cores.#
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Evolution Of CMB Satellite Maps 
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Studying Supernovae: Low Mach Number 
Approaches in Astrophysics 

  Researchers at LBNL have developed 
a new mathematical model based on 
low Mach number analysis. 

  The new method allows 
astrophysicists to study the ignition 
process in Type Ia supernovae, which 
are used as “standard candles” in 
cosmological studies. 

  The low Mach number approach has 
been validated by comparison with 
compressible and anelastic 
approaches and promises significant 
computational savings. Vortical Structure induced by local heating in a 

while dwarf.  The simulation was performed 
with the MAESTRO code that is based on the 
low Mach number analysis developed at LBNL.   

A. Almgren, J. Bell, LBNL, Base Math Program 
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Quantum Effects of Photosynthesis 

Spectrum modeling and quantum dynamics simulations: 
  Oscillations correlate with the quantum coherence in the 

system. 
  Energy transfer pathways shown inside network of 

photosynthetic pigment-protein complexes. 

Sunlight absorbed by 
bacteriochlorophyll (green) 
within the FMO protein (gray) 
generates a wavelike motion 
of excitation energy. 
Quantum mechanical 
properties can be mapped 
through the use of two-
dimensional electronic 
spectroscopy.  

(Image courtesy of G. Engel)  
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Exploring Nanoelectronics with Theory: 
Single Molecule Electrical Junctions 

Electron flow#

Shown at left is a single hydrogen molecule (in white) bridging 
palladium point contacts. At right, a density plot of the dominant 
transmitting electronic state reveals a significant reflection of charge 
at the left Pd contact, leading to a high resistance, consistent with 
recent experiments. (Red is high electronic density in the plot, blue 
is low.) 

H2#

Pd#Pd#

Steven Louie,  
Marvin Cohen,  
UC Berkeley 
Jeff Neaton, LBNL 
Molecular Foundry 
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“Experimental Math”: Discovering New 
Mathematical Results by Computer 

  Compute various mathematical entities (limits, infinite series sums, 
definite integrals) to high precision, typically 100-1000 digits. 

  Use algorithms such as PSLQ to recognize these entities in terms of well-
known mathematical constants. 

  When results are found experimentally, seek to find formal mathematical 
proofs of the discovered relations. 

Many results have recently been found using this methodology, both in pure 
mathematics and in mathematical physics. 

“If mathematics describes an objective world just like physics, there is no 
reason why inductive methods should not be applied in mathematics just 
the same as in physics.” – Kurt Godel 

Mathematics Computer 
science 

Scientific 
computing Mathematics 
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The PSLQ Integer Relation Algorithm 

Let (xn) be a given vector of real numbers given to high precision.  An 
integer relation algorithm finds integers (an) such that  

(or within some “epsilon” of zero).  

At the present time the “PSLQ” algorithm of mathematician-sculptor 
Helaman Ferguson is the most widely used integer relation algorithm, 
although the “LLL” algorithm is also used.  PSLQ was named one of ten 
“algorithms of the century” by Computing in Science and Engineering. 

1.  H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, an integer relation finding algorithm,” 
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369. 
2.  DHB and D. J. Broadhurst, “Parallel integer relation detection: Techniques and applications,” Mathematics 
of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736. 

a1x1 + a2x2 + · · · + anxn = 0
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Ferguson’s PSLQ Algorithm Used to Solve 
Problem Inspired by Ferguson’s Sculpture 

The complement of the figure-eight knot, 
when viewed in hyperbolic space, has finite 
volume#

2.029883212819307250042…  #

Recently physicist David Broadhurst found, 
using PSLQ, that this constant is given by 
the formula:#

J. M. Borwein and D. H. Bailey, Mathematics by Experiment, 
A.K. Peters, 2004, pg. 53.#
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PSLQ Discovery: 
The BBP Formula for Pi 

In 1996, this new formula for π was found using a PSLQ program: 

This formula permits one to compute binary (or hexadecimal) digits of π 
beginning at an arbitrary starting position, using a very simple scheme that 
can run on any system, using only standard 64-bit or 128-bit arithmetic. 

Recently it was proven that no base-n formulas of this type exist for π, 
except n = 2m. 

1.  DHB, P. B. Borwein and S. Plouffe, “On the rapid computation of various polylogarithmic constants,” 
Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913. 
2.  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and excluding b-ary Machin-type BBP formulae,” 
Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342. 

π =
∞�
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1
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A Sample of the Many New BBP-Type 
Formulas Discovered Using PSLQ 

π2 =
1
8

∞�
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�

where ζ is the Riemann zeta function. 
DHB, “A compendium of BBP-type formulas,” 2010, http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf. 
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A Connection Between BBP Formulas 
and Digit Randomness 

Let {} denote fractional part.  Consider the sequence defined by x0 = 0, 

We showed that π is 16-normal (“random” base-16 digits in a certain sense) 
if and only if this sequence is equidistributed in the unit interval. 

Further, we proved that the following mathematical constant is 2-normal: 

1.  D. H. Bailey and R. E. Crandall, "On the Random Character of Fundamental Constant Expansions," 
Experimental Mathematics, vol. 10, no. 2 (Jun 2001), pg. 175-190.  
2.  D. H. Bailey and R. E. Crandall, “Random Generators and Normal Numbers,” Experimental Mathematics, 
vol. 11, no. 4 (2002), pg. 527-546.#
3.  D. H. Bailey, "A Pseudo-Random Number Generator Based on Normal Numbers," manuscript, Dec 2004, 
http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf.#

xn =
�

16xn−1 +
120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

�

α2,3 =
∞�

n=1

1
3n23n

= 0.041883680831502985071252898624571682426096 . . .10

= 0.0ab8e38f684bda12f684bf35ba781948b0fcd6e9e0 . . .16
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Ising Integrals from Mathematical 
Physics 

We recently applied our methods to study three classes of integrals that 
arise in the Ising theory of mathematical physics – Dn and two others: 

where in the last line uk = t1 t2 … tk. 

DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal of Physics A: Mathematical 
and General, vol. 39 (2006), pg. 12271-12302. 
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Limiting Value of Cn: 
What Is This Number? 

The Cn numerical values appear to approach a limit.  For instance, 

What is this limit?  We copied the first 50 digits of this numerical value into 
the online Inverse Symbolic Calculator (ISC): 
http://ddrive.cs.dal.ca/~isc   or   http://carma-lx1.newcastle.edu.au:8087/ 

The result was: 

where gamma denotes Euler’s constant.  Finding this limit led us to the 
asymptotic expansion and made it clear that the integral representation of 
Cn is fundamental. 

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . .

lim
n→∞

Cn = 2e−2γ
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Other Ising Integral Evaluations Found 
Using PSLQ Calculations 

D2 = 1/3
D3 = 8 + 4π2/3− 27 L−3(2)
D4 = 4π2/9− 1/6− 7ζ(3)/2
E2 = 6− 8 log 2
E3 = 10− 2π2 − 8 log 2 + 32 log2 2
E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3

+16π2 log 2− 22π2/3

E5
?= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2

+40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2
+464 log2 2− 40 log 2

where ζ is the Riemann zeta function and Lin(x) is the polylog function.  D2, 
D3 and D4 were originally provided to us by mathematical physicist Craig 
Tracy, who hoped that our tools could help identify D5. 
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Discovering AND Proving New 
Mathematical Formulas by Computer 

For certain types of mathematical formulas, we can discover them using 
PSLQ, then prove them using the Wilf-Zeilberger algorithm.   

Here is one example of a new mathematical result that was both discovered 
and proven by computer: 

∞�

n=0

ζ(2n + 2)x2n =
1− πx cot(πx)

2x2
=

∞�

k=1

1
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= 3
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k=1

1
k2

�2k
k

�
(1− x2/k2)

k−1�

m=1

�
1− 4 x2/m2

1− x2/m2

�

DHB, J. M. Borwein and D. M. Bradley, “Experimental Determination of Apery-Like Identities for Zeta(2n+2),” 
Experimental Mathematics, vol. 15 (2006), pg. 281-289. 
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Summary 

  Scientific computing has vastly expanded in sophistication and power 
over the past 40 years, and is now widely regarded as a third mode of 
scientific discovery, after theory and experiment. 

  Modern scientific computing is a multidisciplinary “symphony” involving 
scientists and engineers from many fields. 

  The power of the leading-edge systems has closely followed Moore’s 
Law in an exponentially upward path, and no end is yet in sight. 

  Computers have recently been applied into mathematical research, 
discovering many new previously unknown results, including a new 
formula for pi. 

Major challenges: 
•  In order to utilize future systems efficiently, computer programs must 

possess and exhibit enormous parallelism (1010-way or more). 
•  Exotic architectures (e.g., hybrid systems employing game processors) 

will present difficult programming and software challenges. 
•  Daunting electric power requirements projected for future systems will 

require innovation in hardware, software and applications. 


